Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(1): e20230010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451594

RESUMEN

Growth and carcass traits are essential selection criteria for beef cattle breeding programs. However, it is necessary to combine these measurements with body composition traits to meet the demand of the consumer market. This study aimed to estimate the genetic parameters for visual scores, growth (pre and post-weaning weights), and carcass (rib eye area (REA), back and rump fat thickness) traits in Nellore cattle using Bayesian inference. Data from 12,060 animals belonging to the HoRa Hofig Ramos herd were used. Morphological traits were evaluated by the MERCOS methodology. The heritability estimates obtained ranged from low to high magnitude, from 0.15 to 0.28 for visual scores, 0.13 to 0.44 for growth, and from 0.42 to 0.46 for carcass traits. Genetic correlations between visual scores and growth traits were generally of moderate to high magnitudes, however, visual scores showed low correlations with carcass traits, except between sacral bone and structure and REA. Selection for visual score traits can lead to favorable responses in body weight and vice versa, but the same is not true for carcass traits. Morphological categorical traits can be used as complementary tools that add value to selection.


Asunto(s)
Composición Corporal , Bovinos/genética , Animales , Teorema de Bayes , Peso Corporal/genética , Composición Corporal/genética , Fenotipo
2.
Genet Sel Evol ; 55(1): 93, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097941

RESUMEN

BACKGROUND: Selecting animals for feed efficiency directly impacts the profitability of the beef cattle industry, which contributes to minimizing the environmental footprint of beef production. Genetic and environmental factors influence animal feed efficiency, leading to phenotypic variability when exposed to different environmental conditions (i.e., temperature and nutritional level). Thus, our aim was to assess potential genotype-by-environment (G × E) interactions for dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle (Bos taurus indicus) based on bi-trait reaction norm models (RN) and evaluate the genetic association between RFI and DMI across different environmental gradient (EG) levels. For this, we used phenotypic information on 12,958 animals (young bulls and heifers) for DMI and RFI recorded during 158 feed efficiency trials. RESULTS: The heritability estimates for DMI and RFI across EG ranged from 0.26 to 0.54 and from 0.07 to 0.41, respectively. The average genetic correlations (± standard deviation) across EG for DMI and RFI were 0.83 ± 0.19 and 0.81 ± 0.21, respectively, with the lowest genetic correlation estimates observed between extreme EG levels (low vs. high) i.e. 0.22 for RFI and 0.26 for DMI, indicating the presence of G × E interactions. The genetic correlation between RFI and DMI across EG levels decreased as the EG became more favorable and ranged from 0.79 (lowest EG) to 0.52 (highest EG). Based on the estimated breeding values from extreme EG levels (low vs. high), we observed a moderate Spearman correlation of 0.61 (RFI) and 0.55 (DMI) and a selection coincidence of 53.3% and 40.0% for RFI and DMI, respectively. CONCLUSIONS: Our results show evidence of G × E interactions on feed efficiency traits in Nellore cattle, especially in feeding trials with an average daily gain (ADG) that is far from the expected of 1 kg/day, thus increasing reranking of animals.


Asunto(s)
Ingestión de Alimentos , Interacción Gen-Ambiente , Bovinos/genética , Animales , Masculino , Femenino , Genotipo , Ingestión de Alimentos/genética , Fenotipo , Alimentación Animal
3.
Transl Anim Sci ; 6(4): txac163, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36601061

RESUMEN

Animal dimensions are essential indicators for monitoring their growth rate, diet efficiency, and health status. A computer vision system is a recently emerging precision livestock farming technology that overcomes the previously unresolved challenges pertaining to labor and cost. Depth sensor cameras can be used to estimate the depth or height of an animal, in addition to two-dimensional information. Collecting top-view depth images is common in evaluating body mass or conformational traits in livestock species. However, in the depth image data acquisition process, manual interventions are involved in controlling a camera from a laptop or where detailed steps for automated data collection are not documented. Furthermore, open-source image data acquisition implementations are rarely available. The objective of this study was to 1) investigate the utility of automated top-view dairy cow depth data collection methods using picture- and video-based methods, 2) evaluate the performance of an infrared cut lens, 3) and make the source code available. Both methods can automatically perform animal detection, trigger recording, capture depth data, and terminate recording for individual animals. The picture-based method takes only a predetermined number of images whereas the video-based method uses a sequence of frames as a video. For the picture-based method, we evaluated 3- and 10-picture approaches. The depth sensor camera was mounted 2.75 m above-the-ground over a walk-through scale between the milking parlor and the free-stall barn. A total of 150 Holstein and 100 Jersey cows were evaluated. A pixel location where the depth was monitored was set up as a point of interest. More than 89% of cows were successfully captured using both picture- and video-based methods. The success rates of the picture- and video-based methods further improved to 92% and 98%, respectively, when combined with an infrared cut lens. Although both the picture-based method with 10 pictures and the video-based method yielded accurate results for collecting depth data on cows, the former was more efficient in terms of data storage. The current study demonstrates automated depth data collection frameworks and a Python implementation available to the community, which can help facilitate the deployment of computer vision systems for dairy cows.

5.
J Anim Sci ; 98(11)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877515

RESUMEN

An important criterion to consider in genetic evaluations is the extent of genetic connectedness across management units (MU), especially if they differ in their genetic mean. Reliable comparisons of genetic values across MU depend on the degree of connectedness: the higher the connectedness, the more reliable the comparison. Traditionally, genetic connectedness was calculated through pedigree-based methods; however, in the era of genomic selection, this can be better estimated utilizing new approaches based on genomics. Most procedures consider only additive genetic effects, which may not accurately reflect the underlying gene action of the evaluated trait, and little is known about the impact of non-additive gene action on connectedness measures. The objective of this study was to investigate the extent of genomic connectedness measures, for the first time, in Brazilian field data by applying additive and non-additive relationship matrices using a fatty acid profile data set from seven farms located in the three regions of Brazil, which are part of the three breeding programs. Myristic acid (C14:0) was used due to its importance for human health and reported presence of non-additive gene action. The pedigree included 427,740 animals and 925 of them were genotyped using the Bovine high-density genotyping chip. Six relationship matrices were constructed, parametrically and non-parametrically capturing additive and non-additive genetic effects from both pedigree and genomic data. We assessed genome-based connectedness across MU using the prediction error variance of difference (PEVD) and the coefficient of determination (CD). PEVD values ranged from 0.540 to 1.707, and CD from 0.146 to 0.456. Genomic information consistently enhanced the measures of connectedness compared to the numerator relationship matrix by at least 63%. Combining additive and non-additive genomic kernel relationship matrices or a non-parametric relationship matrix increased the capture of connectedness. Overall, the Gaussian kernel yielded the largest measure of connectedness. Our findings showed that connectedness metrics can be extended to incorporate genomic information and non-additive genetic variation using field data. We propose that different genomic relationship matrices can be designed to capture additive and non-additive genetic effects, increase the measures of connectedness, and to more accurately estimate the true state of connectedness in herds.


Asunto(s)
Bovinos/genética , Genoma/genética , Genómica , Animales , Brasil , Cruzamiento , Granjas , Genotipo , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...